

Introduction to CloudTurbine

John P. Wilson, Erigo Technologies

April 9, 2018

i | P a g e

Contents
Contents ... i

Goals ... 1

Introduction .. 2

Installation .. 3

Using CT source and sink applications .. 6

CTmousetrack demonstration .. 6

CTstream demonstration .. 8

Sharing data .. 11

Developing CT applications ... 14

Final notes ... 18

1 | P a g e

Goals
CloudTurbine (CT) is an open source technology which saves data as incremental file “packets” to

support archiving and streaming. It has been utilized in various data acquisition, video/audio and even

multi-player gaming applications (Figure 1). This tutorial explains how to install CT, use source

applications (apps such as CTstream that write data to CT format) and sink applications (apps such as

CTweb that read CT-formatted data). We also provide a brief overview of developing CT apps.

Throughout this tutorial, we will point to useful resources available at the CloudTurbine web site,

http://www.cloudturbine.com.

In providing a broad overview of CT, there are many aspects of the technology which we won’t examine

in detail. For further information, we invite you to explore the CT web site, which contains reference

documents, white papers and demonstrations highlighting CT in action.

Figure 1. CloudTurbine technology enabling real-world streaming data in a Unity-based demonstration

game (http://www.cloudturbine.com/cloudturbine-for-mixed-reality/).

http://www.cloudturbine.com/
http://www.cloudturbine.com/cloudturbine-for-mixed-reality/

2 | P a g e

Introduction
CloudTurbine is a structured folder and file format that facilitates archiving and streaming any type of

data. As open source software (published under the Apache 2.0 license), CT is freely available and can

be extended or embedded in other applications (commercial or otherwise). For a brief introduction to

CT, see the 1-page brochure available at the CloudTurbine website (http://www.cloudturbine.com/ct-

white-paper-doc/).

CT’s core innovation is to save data (of any type) as incremental files. CT formatted data files are useful

as a local archive, but the real power of saving data in this format is to enable streaming via third-party

file sharing services such as Dropbox or OneDrive.

The CT software distribution includes various “source” applications for saving data to CT format; you can

also develop your own source apps using the Java or C# APIs1. CT supports viewing live and historical

data in a browser with WebScan (we’ll show how to do this in the next section); other viewer and utility

applications are available online2, or you can develop your own using the Java API3.

Just as important as CT’s core innovation (saving data to incremental files) is our core philosophy: with

CT, you never lose control of your data. There is no “central repository” storing your data. You control

where you write and how you distribute your data. CloudTurbine also includes security features for data

at rest and data in transit encryption.

Look at the introductory video at http://www.cloudturbine.com/category/demos/. The image and

audio data for this video is stored in CT format, accessed from a cloud-based CT archive and played in an

embedded WebScan frame in the browser. This brief video is presented by Matt Miller, the inventor of

CloudTurbine.

While CT includes the capability to save data via FTP and HTTP as well as distribute data using an

included web-server application, at its core CT focuses on reading and writing data files. Network

services such as Dropbox are leveraged to create a complete data archiving, mirroring and distribution

network4.

1 http://www.cloudturbine.com/writing-ct-source-apps/

2 http://www.cloudturbine.com/applications/

3 http://www.cloudturbine.com/writing-ct-sink-apps/

4 CT’s “micro-kernel” approach may be contrasted with DataTurbine/RBNB middleware server software.

DataTurbine users may be interested in the “OSDT vs. CT” FAQ page available at

http://www.cloudturbine.com/osdt-vs-ct/.

http://www.cloudturbine.com/ct-white-paper-doc/
http://www.cloudturbine.com/ct-white-paper-doc/
http://www.cloudturbine.com/category/demos/
http://www.cloudturbine.com/writing-ct-source-apps/
http://www.cloudturbine.com/applications/
http://www.cloudturbine.com/writing-ct-sink-apps/
http://www.cloudturbine.com/osdt-vs-ct/

3 | P a g e

Installation
CloudTurbine is hosted at the Cycronix page on GitHub, https://github.com/cycronix/cloudturbine.
Binary applications are available with the CT releases on GitHub (download the CTapps.zip file) or you
can compile apps from source. To compile CT code, you will need a Git client to clone the CT repository
to your local machine and a JDK from Oracle (v1.8 or newer). CT uses a Gradle-based build system.
Compile the apps using the supplied Gradle wrapper files (no need to locally install Gradle). Developers
may want to peruse two resources at the CT website: “Using GitHub and Git”
(http://www.cloudturbine.com/using-github-and-git/) and “Gradle-based CloudTurbine build system”
(http://www.cloudturbine.com/gradle/).

To use a binary distribution, go to the latest release
(https://github.com/cycronix/cloudturbine/releases/latest), download CTapps.zip and unzip it on your
computer. You must have a Java JRE or JDK (v1.8 or newer) installed on your system to run CT
applications. Bring up a terminal or command prompt window in the directory where you unzipped the
CT apps. Execute the web server application, CTweb.jar, as follows:

java -jar CTweb.jar

Figure 2 shows CTweb running in a Windows command prompt window.

Figure 2. Running CT web server.

In a browser window, go to http://localhost:8000. This connects to the web server and runs a WebScan
data window in your browser. Click on the small “+” popup menu in the upper left corner of the window
and add the SpaceX/image.jpg channel to the window; click on “+” again and add the SpaceX/audio.wav
channel. Click the “>” button (in lower-right corner) to play the video. This video of a SpaceX launch
(saved as CT image and audio channels) is included as sample data with the CT distribution. Try moving
the scrollbar manually back and forth to play forward and backward through the locally-hosted CT data.
Figure 3 shows the data in a browser window.

https://github.com/cycronix/cloudturbine
http://www.cloudturbine.com/using-github-and-git/
http://www.cloudturbine.com/gradle/
https://github.com/cycronix/cloudturbine/releases/latest
http://localhost:8000/

4 | P a g e

Figure 3. Playing pre-recorded CT data in a WebScan window in a browser.

Use your system’s file explorer to examine the files in the CTdata folder from the distribution (Figure 4).
SpaceX (the top folder) is the name of the CT source. Under SpaceX is a folder named 1490925904345,
which represents the data start time in milliseconds since January 1, 1970 (epoch time). This is called
the “session” level folder in CT parlance. Within this CT session folder is a series of ZIP files, called data
“blocks”.

CT block folders are typically ZIP’ed for enhanced compression and organization. The numbers used for
the names of the ZIP files indicate a relative offset (in milliseconds) from the top session time. Looking
at the files in this example folder, you can see that each ZIP file holds approximately 2 seconds worth of
data; that is, the names of the ZIP files step up in approximately 2000 millisecond increments. Unzipping
one of these files reveals another folder layer, called the “point” folders.

5 | P a g e

The name of each point folder indicates a relative offset (in milliseconds) from the parent block folder
time. Channel data files are stored in the point folders; for our SpaceX example, you will see image.jpg
and audio.wav files. You can double-click on any of these files to see the data snapshot at that point in
time. The video we watched in the browser is made up of a sequence of these files; in this case, images
which were saved at 10 frames/sec and audio as a series of 16-bit 8kHz “.wav” files.

Figure 4. Examining the folder hierarchy of a sample CT source.

As an optional installation step, it may be convenient to define a ctdir environment variable which
points to your unpacked CTapps folder. Using this, you can run CT apps from any location on your
computer; for example, in Windows, you could run:

java -jar %ctdir%\CTweb.jar

6 | P a g e

Using CT source and sink applications
In this tutorial we will introduce using CloudTurbine source applications (which produce CT data) and

continue to use CTweb to fetch/view CT data (a CT sink application).

CTmousetrack demonstration

Open a command prompt/terminal window in your CTapps installation folder. Run the CTmousetrack

source app, which captures your mouse cursor position and stores it in CT format as “x” and “y”

channels:

java -cp CTexample.jar CTmousetrack CTdata/CTmousetrack

Next, we’ll run the CT web server to view this data. (If you still have the server running from the
Installation tutorial above, skip this step.) Open another command prompt/terminal window in your
CTapps installation folder. Execute the CT web server application, CTweb.jar, as follows:

java -jar CTweb.jar

To view the mouse position data, go to http://localhost:8000 in a browser to bring up the WebScan

interface (if you are connecting to the same server from the Installation tutorial above, you might have

to Shift+reload this URL to refresh the page to pick up the new channels). Configure the WebScan view

as follows:

• Click the “gear” icon in the upper right corner of the WebScan window; select a 10 second View
duration and 2 Plots. Click on the gear icon again to close the configuration menu.

• Click the “+” channel selector in one of the plots; you will notice that channels from the SpaceX
and CTmousetrack sources are available.

• In one plot, select the CTmousetrack/x channel and in the other plot select CTmousetrack/y.

• In the lower-right corner of the WebScan interface, click the “go to end” button (“]”) and then
the “real-time” button (“RT”).

As you move the mouse around on your desktop, notice how the x and y channel data changes (Figure
5). You may notice a short delay between moving your mouse and seeing the data change in the
WebScan plot. Two sources contribute to this delay:

• Data is collected for a short time (10 samples at 10 msec period, thus about 100msec) before
being written out to disk as a ZIP file. Packing data in this manner helps to constrain the number
of files being created.

• There is also a small delay for data to be fetched by the WebScan web application and displayed
in the plot. In its “normal” refresh mode, WebScan fetches data updates every second. To
speed this up, open the WebScan configuration menu (click the gear icon in the upper right
corner of the window) and change Refresh to “Fast”.

http://localhost:8000/

7 | P a g e

Figure 5. Data from CTmousetrack displayed using the WebScan interface.

Observe the CT files as they are being written to disk by launching a file explorer window on your system
and navigating to the CTdata/CTmousetrack folder. At the top level you will see a single “session” level
folder whose name is a 13-digit number, representing the epoch timestamp (milliseconds since January
1, 1970) of the start of the data source. Under this session folder you will find a series of “segment”
level folders whose names represent a relative offset (in milliseconds) from the top session folder
timestamp. CTmousetrack is configured to store 1000 block-level ZIP files in each segment folder.
Navigate into the newest segment folder and watch as it is populated with ZIP files. Each ZIP file
contains 10 mouse cursor x,y position data points; after collecting 10 data points, CTmousetrack
“flushes” the data to write it out as a block-level ZIP file.

Unpack one of the ZIP files. Within the unpacked block folder, you will see a point folder which contains
the “x” and “y” channel files. Each of these channel files contain 10 comma-separated value (CSV)
samples (Figure 6). In CT-parlance, these are referred to as “packed” data files.

8 | P a g e

Figure 6. Sample data from CTmousetrack, saved as comma-separated value files.

For this CTmousetrack source, step back and notice the hierarchy of timestamped folders with channel
data files at the lowest level. At the top level (under CTdata/CTmousetrack) we find the “session” folder
with its absolute epoch timestamp, followed by an (optional) segment level folder, followed by ZIP files
at the block level. Within each ZIP file is an additional folder level (point folder) which contains the
channel files. Additional information about the CT folder/file hierarchy can be found in the “structure”
document at the CT web portal, http://www.cloudturbine.com/structure/.

As a side note, let’s think about the CT “flush” rate (the rate at which ZIP data blocks are written to disk)
for a moment. If you are distributing CT ZIP files in real time using a file sharing service, the rate at
which these files are generated (the “flush” rate) can be optimized based on what the underlying
network service can support. For example, Dropbox can share about 2 files per second. Thus, it would
be best to write at most 2 ZIP block files per second when using this file sharing service, otherwise your
shared data will get further and further behind. As a rule of thumb, many file sharing services can
support at least one file update per second, thus writing out one new CT ZIP file per second is a good
rate.

We’ll run another CT source demonstration next using CTstream. But first, to avoid filling your disk with
data, terminate the CTmousetrack application.

CTstream demonstration

Bring up a command prompt/terminal window in your CTapps folder and start CTstream as follows:

java -jar CTstream.jar

Click on the “screen” and “text” checkboxes and click the “Start” button. Text messages you write in the
multiline text area are saved to CT format, as are screen captures from the region within the red capture
box. As shown in Figure 7, we are capturing a web browser displaying the current time.

http://www.cloudturbine.com/structure/

9 | P a g e

Figure 7. CTstream saving text and screen capture images to CT file format.

Assuming you still have the CTweb server running, go to http://localhost:8000 in a browser to view the
captured data (you might need to Shift+reload to refresh the WebScan page to have it pick up the new
channels). Click on the “gear” icon in the upper right corner of the WebScan window to pop open the

http://localhost:8000/

10 | P a g e

options dialog. Select a 1 second duration and chose to view 2 plots. Click on the gear icon again to
hide the configuration dialog box. Click on the “+” menus in the upper left corner of each empty plot
and select the “screencap.jpg” or “text.txt” channels. In the lower right corner of the WebScan page,
click the “go to end” button (“]”) and then click the “real-time” button (“RT”). WebScan will display new
data as it is captured and saved to CT format by CTstream. For example, change the text message in the
CTstream text area or move/resize CTstream’s screen capture region and observe the data updates in
WebScan. By default, CTstream flushes data to CT-formatted files once every second; thus, there is a
small delay between CTstream capturing the data and that new data showing up in WebScan. If you
capture an image of current wall clock time (as shown in Figure 7), you will get a good idea of the delay
between capturing the image in CTstream and displaying it in WebScan. CTstream’s flush rate can be
changed via the File/Settings dialog.

As we did with the CTmousetrack source, you can explore the hierarchy of time folders saved in the
CTstream source data. Navigating to the lowest level, you will see the saved channel files:
“screencap.jpg” and “text.txt”.

Before proceeding to the next part of the tutorial, shut down CTstream and the CTweb server.

11 | P a g e

Sharing data
CloudTurbine is a technology which writes data as incremental, time-stamped files. As such, it is

uniquely positioned to leverage third-party file sharing services to distribute and mirror data. Any

service that supports file sharing can be used to “stream” CloudTurbine data; for example, Dropbox,

Box, Google Drive, or Microsoft OneDrive. Users can take advantage of the built-in capabilities file

sharing services offer, including performance, flexibility, supported tools and security features (these

capabilities will, of course, differ widely across services).

Suppose you’d like to provide users access to your CT data. There are two basic ways to establish a CT

network to accomplish this: First, run CTweb as a hub-and-spoke server on a LAN. This simple network

design is effective for providing low-latency access to CT data for a small number of users. Second, CT

files can be widely distributed to a group of users you specify via a file sharing service such as Dropbox

or Google Drive. Across this WAN, users can access their own local copy of your CT data, viewing it with

a locally running CTweb server and WebScan. Data distribution using a third-party service introduces

additional latency but has the potential to support many users.

Let’s try the “WAN” network mode described above. For this test, you will need two computers, each of

which have the selected file sharing service (such as Dropbox) installed. For ease of use, you may

choose to run this demonstration with both computers side-by-side on your desk.

Make a new shared folder called CloudTurbine. Copy the CTstream.jar and CTweb.jar apps to this

shared folder. Within the shared folder, make another folder called CTdata. See the folder hierarchy

shown in Figure 8 (we are using Dropbox for this demonstration, but you can use any file sharing

service). These folders and files should automatically be copied to your remote system.

Figure 8. Setup for sharing data using a third-party file sharing service.

On one system, we’ll call it the “local” system, bring up a command prompt/terminal window, change to
the shared CloudTurbine folder and run CTstream:

java -jar CTstream.jar

Enable any of the desired capture streams (screen, camera, etc.) and click the Start button. (See the
prior section, “Using CT source and sink applications”, for details on running this application.) CT data
will be saved in the CTdata/CTstream folder.

12 | P a g e

Since the CT data is saved in a shared folder, it will be automatically copied to the second computer
(what we’ll call the “remote” system). Examine the incoming block data (ZIP) files under the
CTdata/CTstream folder on the remote system. Depending on the sharing service, it may not be able to
keep up with CTstream’s default one-zip-file-per-second rate. If you notice that the incoming files on
the remote system are getting further and further behind the files being saved on the local system, try
increasing CTstream’s “Flush interval” (available from the File menu, Settings item); for example, change
from 1sec to 2sec or 5sec interval. As flush interval is increased, the block/ZIP file generation rate will
decrease (more data will be packed into each ZIP file). A downside of increasing flush interval is that
data latency also increases (more delay before the files are saved to disk).

Run CTweb server on the local system and another CTweb server on the remote system; view the data
on each system in a browser at http://localhost:8000. If the local and remote systems used in this
demonstration are on the same LAN, you can also view the CT data in a browser on a third computer
using the local IP address of either the “local” or “remote” system. Figure 9 shows a screen capture of
data from the “local” system (left panel) and the “remote” system (right panel) at one instant of time.
The difference in time between the clock images in each browser screen gives an indication of the
latency in copying data from the “local” to the “remote” system; about 5 seconds in this case.

Figure 9. Viewing shared data from a “local” system (left browser window) and the “remote” system

(right browser window).

We can run this demonstration on a LAN with “local” and “remote” computers side-by-side on a desk,
but bear in mind that (based on the capabilities of the third-party file sharing system) these two
machines could just as easily be half-way around the world from each other. In this manner, CT can
leverage third-party file sharing services to support global data WANs.

http://localhost:8000/

13 | P a g e

This tutorial has focused on writing local CT data files and using a third-party file sharing service to

distribute these files. CT also supports writing data to remote FTP or HTTP servers. You can HTTP PUT

data to the CTweb server (must run CTweb with the “-W <num_sources>” option). CTstream supports

writing out CT data to the local file system (as we did above) and also to FTP or HTTP servers; see the

CTstream app page for details (http://www.cloudturbine.com/ctstream/).

The following white papers (available on the CloudTurbine website) provide further information and

options to consider when sharing CT data:

“Scalable CloudTurbine Networks” (http://www.cloudturbine.com/scalable-cloudturbine-networks/)

describes CT networking topologies.

“CloudTurbine Security White Paper” (http://www.cloudturbine.com/ct-security-white-paper-pdf/)

discusses various aspects of CloudTurbine security, including data-at-rest, data-in-use, data in transit,

and security use-cases.

http://www.cloudturbine.com/ctstream/
http://www.cloudturbine.com/scalable-cloudturbine-networks/
http://www.cloudturbine.com/ct-security-white-paper-pdf/

14 | P a g e

Developing CT applications
CloudTurbine technology is focused on writing data to and reading data from a well-defined folder/file

hierarchy.5 By default, CT writes to the local file system, but support is included for writing via FTP or

HTTP/S. CT includes a Java API library6 (“CTlib.jar” in the binary distribution) for developing your own CT

source or sink/viewer apps. A more limited C# library is also available which supports writing data to CT

format7.

Writing custom CT applications is straightforward using one of these APIs, but it isn’t the only way to

create CT data. Consider the article “How to get your data into CT”8 which discusses 4 ways to save data

to CT format. This article’s “Shell script” tab includes a simple Linux shell script that fetches live

internet-accessible webcam images and saves them in CT format. The script is shown in Figure 10. Try

this script by saving it as a bash file, “save_webcam.bash”, in the same folder as your other CT JAR files

(see the Installation section above for setup information).

NOTE: If you are running this script under Cygwin, save the content from Figure 10 in a file called

“save_webcam.txt” then run the following command to convert Windows line endings to Linux line

endings:

tr -d '\15\32' < save_webcam.txt > save_webcam.bash

Give the script file executable permission and run it. Data will be saved under the CTdata directory in

the “Dartmouth” source folder. Open file explorer on your computer and look through the folder/file

hierarchy (for example, see Figure 11). You can double-click on channel files (“webcam.jpg”) to view the

image at that corresponding time snapshot.

Start CTweb server from the CTapps folder:

java -jar CTweb.jar

To view the CT data in real-time, open the WebScan interface at http://localhost:8000, add channel

“Dartmouth/webcam.jpg”, view the newest data by clicking “]” and enter real-time mode by clicking

“RT” (Figure 12).

5 http://www.cloudturbine.com/structure/, PDF version at http://www.cloudturbine.com/wordpress/wp-

content/uploads/2018/02/CT_structure2.pdf

6 https://github.com/cycronix/cloudturbine/tree/master/JavaCode/CTlib

7 https://github.com/jpw-erigo/CTlib_csharp

8 http://www.cloudturbine.com/get-data-into-ct/

http://localhost:8000/
http://www.cloudturbine.com/structure/
http://www.cloudturbine.com/wordpress/wp-content/uploads/2018/02/CT_structure2.pdf
http://www.cloudturbine.com/wordpress/wp-content/uploads/2018/02/CT_structure2.pdf
https://github.com/cycronix/cloudturbine/tree/master/JavaCode/CTlib
https://github.com/jpw-erigo/CTlib_csharp
http://www.cloudturbine.com/get-data-into-ct/

15 | P a g e

Figure 10. Script which fetches images from a live internet webcam and saves them in CT format.

#!/bin/bash

CTdata="CTdata"

if ["$#" -eq 1]; then

 CTdata=$1

fi

CTsource="Dartmouth"

start_time=`date +%s`

CTsession=$CTdata/$CTsource/$start_time

mkdir -p $CTsession

webcamURL="http://wc2.dartmouth.edu/jpg/image.jpg"

while :

do

 current_time=`date +%s`

 block_time=$(($current_time-$start_time))

 CTpoint=$CTsession/$block_time/0

 mkdir -p $CTpoint

 curl -s -S -o temp.jpg "$webcamURL"

 mv temp.jpg "$CTpoint/webcam.jpg"

 printf "."

 sleep 1

done

16 | P a g e

Figure 11. Image output from the script shown in Figure 10.

Figure 12. Viewing images saved via the script shown in Figure 10 in WebScan.

17 | P a g e

This scripting example demonstrates how easy it can be to get data into CT format; once data is saved in
this format, other tools (such as CTweb server) can be used to fetch and view the data. More
substantial source or sink/viewer applications can be developed using one of the CT APIs. The Java API
library, “CTlib.jar”, is included with the CT distribution (you’ll find this file in your CTapps folder). A
section of the CloudTurbine website is devoted to CT development: go to
http://www.cloudturbine.com/documents/ and click on the Developer tab. Two good resources to get
you started with Java development are:

• “Writing CT source apps”, http://www.cloudturbine.com/writing-ct-source-apps/

• “Writing CT sink apps”, http://www.cloudturbine.com/writing-ct-sink-apps/

Also, JavaDoc documentation for the Java API is available at http://cloudturbine.com/javadoc/.

While the CloudTurbine Java API is the officially supported programming interface for developing CT
apps, a more limited Windows .NET API written in C# is available for saving data to CT format (i.e., it
supports a CT-writer capability but not CT-reader). The GitHub page for this library
(https://github.com/jpw-erigo/CTlib_csharp) includes a description of the library’s capabilities,
documentation and a sample application.

A great way to participate in CT development is through the officially sponsored “App-Kits”
(http://www.cloudturbine.com/applications/, click on the App-Kits tab). Each App-Kit has well-defined
goals, a list of resources, and “Developer Updates” where team members can write blog-like posts.
Registered members of the CT website can request to join App-Kit teams or submit an idea to start their
own App-Kit.

http://www.cloudturbine.com/documents/
http://www.cloudturbine.com/writing-ct-source-apps/
http://www.cloudturbine.com/writing-ct-sink-apps/
http://cloudturbine.com/javadoc/
https://github.com/jpw-erigo/CTlib_csharp
http://www.cloudturbine.com/applications/

18 | P a g e

Final notes
Make sure all CT source applications from the tutorials are terminated; delete unneeded data from the

CTdata folder.

We invite you to explore the CT website, http://www.cloudturbine.com, for further information about

CloudTurbine. Our web portal contains introductory information, video demonstrations, white papers,

app and developer documentation, news updates and forums for posting questions or sharing ideas.

If you have an idea for CloudTurbine development or would like help integrating CT into your project,

please email us at info@cycronix.com.

Finally, we would like to express our appreciation to NASA Armstrong Flight Research Center for

supporting the development of CloudTurbine.

http://www.cloudturbine.com/
mailto:info@cycronix.com?subject=Cycronix%20Web%20Site%20Inquiry

